If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n+3n^2=880
We move all terms to the left:
7n+3n^2-(880)=0
a = 3; b = 7; c = -880;
Δ = b2-4ac
Δ = 72-4·3·(-880)
Δ = 10609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10609}=103$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-103}{2*3}=\frac{-110}{6} =-18+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+103}{2*3}=\frac{96}{6} =16 $
| 1.5a-8=10 | | (25/100+y)/3=y+1/2 | | -5w=52 | | -6y+8=-5y+2-4 | | 3(d-4d)=9 | | P=-500+1.50n | | 4x+12(0)=-64 | | 2(1+7n)-7n=-1+6n | | 918.2+z=21,137 | | -2c+5=37 | | 3p+12=-5p-4 | | 64x=3 | | (25/100+y)/3=y+1/2. | | -8=x/2-10 | | 2n+4+n=28 | | 5y-y+2=y | | -c-1=-7-2c | | 5m–1=3m+13 | | -3p+12=-5p+4 | | 5×+2y=120 | | 20x=75-5x | | x+6+3x=28 | | 2(z-10)-z=z-10 | | 4(2+5z)= | | 2(x+2)-6=4x-2(2+x) | | -6v=-7-5v | | -12=y/3-6 | | 3.2y-5=1.4(6+y) | | 0=-8x+40 | | -2/3(x+12)+2/3=2/3=-5/4+2 | | 0=-x+40 | | 5x+11+26=90 |